-
Teoria de Corpos Ordenados e Corpos Valorizados.
Espaços de Ordens, Somas de Quadrados, Invariantes da Teoria de Formas Quadráticas. Grupo de Galois de Corpos
(Aprovada pelo Departamento/Conselho Científico em 01/1989).
-
Teoria de Galois para extensões separáveis de anéis.
Extensões Abelianas. Grupos de Harrison. Teoria de Artin-Schreier-Witt Generalizada. Existência de elemento Primitivo e de Base Normal para Extensões.Galoisianas de Anéis
(Aprovada pelo Departamento/Conselho Científico em __/____).
-
Teoria de Modulos e Ideais.
Conjecturas de Eisenbud-Evans: Caso não Notheriano Construção de Anéis via Derivação
(Aprovada pelo Departamento/Conselho Científico em __/____).
-
Teoria Métrica de Produtos Tensoriais de Diversos Fatores e Aplicações Multilineares.
Estudo Sistematico de Normas Tensoriais. Ideais de Aplicacões Multilineares. Teoremas de Representação de Espaços de Aplicações Multilineares em Termos de Produtos Tensoriais
(Aprovada pelo Departamento/Conselho Científico em __/____).
-
Ideais de Polinomios Holomorfas.
Aplicações Multilineares Versus Polinomios Entre Espaços de Banach, Classes de Aplicações Inteiras Entre Espaços de Banach. Teoria Abstrata de Ideais de Operadores Polinomiais e Holomorfos Aplicações
a Holomorfia. Aplicações a Holomorfia Entre Espaços de Banach
(Aprovada pelo Departamento/Conselho Científico em __/____).
-
Processos Lineares de Aproximação em Produtos Tensoriais, Em Somas de Conjuntos Conexos em em Cones Convexos.
(Aprovada pelo Departamento/Conselho Científico em __/____).
-
Aplicaões da Geometria e Topologia em Física Teorica.
Teoria da Relatividade. Campos de Yanghills. Cosmologia. Aplicações da Teoria de Morse-Smale e das Algebras de Kac-Moody em Física
(Aprovada pelo Departamento/Conselho Científico em __/____).
-
Problemas Geométricos em Cálculo de Variações.
Teorema de Existência e Multiplicidade de soluções por alguns Problemas Clássicos do Cálculo das Variações: Geodésicas Periódicas, Aplicações Harmonicas, Campos de Yang-Mills, Problemas Isoperimétricos. Aplicações de Grupos de Transformações em Geometria Riemanniana
(Aprovada pelo Departamento/Conselho Científico em __/____).
-
Processos Lineares de Aproximação em Produtos Tensoriais, Em Somas de Conjuntos e em Cones Convexos.
Estimativas de Constantes de Projeção para Subespaços de Produtos Tensoriais. Somas de Conjuntos Convexos. Grau de Aproximação e Classe de Saturação de Operadores Positivos Definidos em Cones Convexos de Funções Continuas Periódicas de Período 2 PI Definidas em R
(Aprovada pelo Departamento/Conselho Científico em __/____).
-
Produtos Tensoriais Simétricos de Espaços Localmente Convexos.
Estudo Sistemático: Propriedades Algebricas e Topologias. Teoria Métrica: Normas Tensoriais de Produtos Tensoriais Simétrico. Aplicações ao Estudo de Polinômios e Funções Holomorfas. Objetivos Universais na Teoria de Aplicações Holomorfas
(Aprovada pelo Departamento/Conselho Científico em __/____).
-
Soluções Generalizadas de Equações Diferenciais.
Resolução de Problemas de Cauchy de Equações Diferencias Parcias Não Lineares Via a Teoria de Distribuição Desenvolvida por J.F. Colombeau
(Aprovada pelo Departamento/Conselho Científico em __/____).
-
Teoria da Medida e Integração.
Análise de Sub-Grupos Gerados por K-Limites Sobre Entropias Fuzzy e Martingales. Funções Topologicamente Fechadas e Problema de Mini-Max
(Aprovada pelo Departamento/Conselho Científico em __/____).
-
Sistemas Integráveis e Física Matemática, Métodos Algébricos e Combinatorias.
Estudo da Coerência nas Médias de Magnitudes em Mecânica Estatística. Condensação de Produtos Tensoriais de Matrizes Centro-Simetrica. A estrutura Polinomial das Médias de Balaban-Federbusch. Aplicação de Métodos da Teoria de Renormalização a Teoria da Gravidade na Rede. Versão do Teorema de Estabilidade de Federbush para a Ação de Hamber-Williams. Utilização dos Complexos Simpliciais Abstratos noCálculo de Regge Segundo Lehto - Nielson - Mimomiya
(Aprovada pelo Departamento/Conselho Científico em __/____).
-
Equações de Evolução.
Estudo de Equações de Evolução Governadas por Equações Diferenciais Parciais. Estudo e Questões Relativas ao Problema de Cauchy. Propagação Ondulatoria. Regularidade de Soluções. Equações não LinearesEstabilidade. Soluções Periódicas. Comportamento Assintótico
(Aprovada pelo Departamento/Conselho Científico em __/____).
-
Geometria Riemanniana.
Relações entre Invariantes Locais de Variedades Riemannianas (Esp.Curvatura) e Propriedades Topológicas. O Problema Inverso: Obstruções Topologicas para Existências de Números com Curvatura não Negativa
(Aprovada pelo Departamento/Conselho Científico em __/____).
-
Geometria das Subvariedades.
Relações entre Estrutura Pontual (Invariantes Algébricos da Segunda Forma Fundamental). Estrutura Local (Curvatura e Outras Invariantes Riemannianas)e Topologia das Subvariantes de Espaço de Curvatura Constante
(Aprovada pelo Departamento/Conselho Científico em __/____).
-
Sistemas Dinâmicos e Teoria da Bifurcação.
Estudamos Campos em Variedades com Bordo e Campos Discontinuos através de um Estudo Qualitativo do Plano de Fase e de suas Bifurcações. Estudamos a Estrutura de Órbitas Tangentes ao Bordo, de Codimensão dois e Três de uma Família de Campos de Vetores com Bordo de Dimensão Três. Temos Também Trabalhado na Classificação de Campos Descontinuos Deslizantes e na Complexidade de Um Difeomorfismo PI de
R expoente 3 com Relação a uma Superfície Local de Dimensão Dois
(Aprovada pelo Departamento/Conselho Científico em __/____).
-
Imersões Mínimas: Principles Linesof Minimal Surfaces in CP(Elavado)2.
Estudo de Possíveis Configurações de Linhas de Curvatura Principal e Pontos Umbilicos Sobre Superfícies Mínimas em CP(Elevado)2
(Aprovada pelo Departamento/Conselho Científico em __/____).
-
Problemas Elipticos Superlineares.
Estudar Existência e Multiplicidade de Soluções para Equações Superlineares em Aberto Limitados do R expoente N com condições de Fronteira e no Caso em que a Função que Aparece na Equação tem comportamento assimétrico no infinito. Resultados parciais foram obtidos com B.Ruff. Em alguns casos se elevado ao estudo do espectro de Fucik e sua caracterização variacional
(Aprovada pelo Departamento/Conselho Científico em __/____).
-
Sistemas de Equações Eliticas.
Estudo sobre a existência de soluções para sistemas eliticos em domínios limitados e com condições de fronteira. No caso Hamiltoniano, obtivemos resultados com P.Felmer usando tecnicas variacionais. No caso não Hamiltoniano , obtivemos resultados com E.Mitidieri e P.Clement usando métodos topológicos e prosseguimos o estudo buscando estimativas a priori. Estudo de bifurcação e princípios do máximo para os sistemas lineares associados
(Aprovada pelo Departamento/Conselho Científico em __/____).
-
Existência de Singularidade de ordem superior e a geometria global das variedades.
Relação entre convexidade e a existência de singulariedades de ordem mais alta. Existência de vértices(pontos de torção nula) de curvas no espaço. Propriedades globais de curvas em variedades Riemannianas
(Aprovada pelo Departamento/Conselho Científico em __/____).
-
Sistemas Dinâmicos Estocásticos.
Os Teoremas de suporte de Strook e Varadhan (extendidos por Kumita)permitem reconhecer os suportes de medidas associadas a um processo de difusão por intermédio de órbitas em tempo positivo de sistemas de controle, por este caminho, o projeto consiste em estudar medidas ergodicas de sistemas dinâmicos estocásticos via conjuntos controláveis e invariantes pra sistemas de controle. Espera-se que os
resultados obtidos possam ser aplicados no estudo dos expoentes de lyepunov de sistemas estocásticos
(Aprovada pelo Departamento/Conselho Científico em __/____).
-
Teoria de Operadores e Interpolação.
Estudos de Aplicações da teoria de operadores na teoria de interpolação e vice-versa
(Aprovada pelo Departamento/Conselho Científico em __/____).
-
Análise de Fourier e Geometria dos Espaços de Banach.
Estudo das Interrelações entre as propriedades analíticas e as propriedades geometricas dos espaços suprajacentes
(Aprovada pelo Departamento/Conselho Científico em __/____).
-
Integrais Singulares.
Estudo da ação de operadores integrais, com núcleo "operadores'do tipo potencial, sobre espaços L(expoente) P de funções a valores num espaço de Banach e definidas num espaço de tipo homogeneo (por exemplo uma variedade riemanniana compacta) ou num corpo local
(Aprovada pelo Departamento/Conselho Científico em __/____).
-
Topologia Algébrica.
Teorias de Cohomologia generalizadas; em particular teoria de cobordismo. Ações de grupos e aspectos cohomologicos. Bordismo de grupos
(Aprovada pelo Departamento/Conselho Científico em __/____).
-
Topologia Combinatória.
Homotopia Regular de Grafos
(Aprovada pelo Departamento/Conselho Científico em __/____).
-
sistemas dinâmicos em variedades de baixa dimensão. Teoria do índice de conley.
O enfoque recente de nossa pesquisa tem sido o estudo de fluxo em variedades compactas de baixa dimensão. Este estudo de natureza qualitativa e dividido numa descrição local do fluxo onde utilizamos ateoria de Morse-Conley no estudo dos conjuntos invariantes (recorrente por partes) e numa descrição global das órbitas que conectam estes conjuntos. Para classificar estes fluxos utilizamos os grafosde Lyapunov. Estudamos também o cancelamento de pontos críticos e classes de continuação de fluxos
(Aprovada pelo Departamento/Conselho Científico em __/____).
-
Equações diferencias em mecânica de meios contínuos.
Estudos sobre existência, regularidade e unicidade de soluções diferenciais parciais que descrevem escoamento de vários tipos de fluídos. Estudo sobre convergência e estimativas de erro de aproximações de tais soluções
(Aprovada pelo Departamento/Conselho Científico em __/____).
-
Utilização de Modelagem em Educação.
(Aprovada pelo Departamento/Conselho Científico em 01/1993).
-
O Uso de Projeto no Ensino da Matemática Universitária.
Ensino de Matemática para alunos de Engenharia e Ciencias Exatas, que tem por objetivo a introdução de modelos e de microcomputadores como motivação e suporte no ensino
(Aprovada pelo Departamento/Conselho Científico em 01/1993).
-
Matemática e Mídia.
Produção de Programas de Vídeo e Módulos (textos e hipertextos com recursos de Multimídia para uso em Computador) para divulgação e ensino a nível de 2 Grau e Universidade
(Aprovada pelo Departamento/Conselho Científico em 01/1993).
-
Geometria e Aplicações.
Aspectos geométricos da física-matemática-vizualização e utilicação de recursos computacionais
(Aprovada pelo Departamento/Conselho Científico em 01/1993).
-
História da Matemática.
O uso da história da matemática como recurso pedagógico na Educação Matemática
(Aprovada pelo Departamento/Conselho Científico em __/____).
-
Etnomatemática.
a) Formação do professor-índio: atuando em 12 tribos brasileiras. b) Educação adulta: atuando na alfabetização matemática de adultos dos Sem-Terra
c) Escolas rurais: atuando em escolas rurais na formação educacional de 1 1 graus em matemática
(Aprovada pelo Departamento/Conselho Científico em __/____).